Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I.

نویسندگان

  • P D Kaufman
  • R Kobayashi
  • B Stillman
چکیده

In vivo, nucleosomes are formed rapidly on newly synthesized DNA after polymerase passage. Previously, a protein complex from human cells, termed chromatin assembly factor-I (CAF-I), was isolated that assembles nucleosomes preferentially onto SV40 DNA templates that undergo replication in vitro. Using a similar assay, we now report the purification of CAF-I from the budding yeast Saccharomyces cerevisiae. Amino acid sequence data from purified yeast CAF-I led to identification of the genes encoding each subunit in the yeast genome data base. The CAC1 and CAC2 (chromatin assembly complex) genes encode proteins similar to the p150 and p60 subunits of human CAF-I, respectively. The gene encoding the p50 subunit of yeast CAF-I (CAC3) is similar to the human p48 CAF-I subunit and was identified previously as MSI1, a member of a highly conserved subfamily of WD repeat proteins implicated in histone function in several organisms. Thus, CAF-I has been conserved functionally and structurally from yeast to human cells. Genes encoding the CAF-I subunits (collectively referred to as CAC genes) are not essential for cell viability. However, deletion of any CAC gene causes an increase in sensitivity to ultraviolet radiation, without significantly increasing sensitivity to gamma rays. This is consistent with previous biochemical data demonstrating the ability of CAF-I to assemble nucleosomes on templates undergoing nucleotide excision repair. Deletion of CAC genes also strongly reduces silencing of genes adjacent to telomeric DNA; the CAC1 gene is identical to RLF2 (Rap1p localization factor-2), a gene required for the normal distribution of the telomere-binding Rap1p protein within the nucleus. Together, these data suggest that CAF-I plays a role in generating chromatin structures in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Saccharomyces cerevisiae chromatin assembly factor-I in repair of ultraviolet radiation damage in vivo.

In vitro, the protein complex Chromatin Assembly Factor-I (CAF-I) from human or yeast cells deposits histones onto DNA templates after replication. In Saccharomyces cerevisiae, the CAC1, CAC2, and CAC3 genes encode the three CAF-I subunits. Deletion of any of the three CAC genes reduces telomeric gene silencing and confers an increase in sensitivity to killing by ultraviolet (UV) radiation. We ...

متن کامل

RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo.

In the yeast Saccharomyces cerevisiae, telomere repeat DNA is assembled into a specialized heterochromatin-like complex that silences the transcription of adjacent genes. The general DNA-binding protein Rap1p binds telomere DNA repeats, contributes to telomere length control and to telomeric silencing, and is a major component of telomeric chromatin. We identified Rap1p localization factor 2 (R...

متن کامل

A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae.

The Sin3-Rpd3 histone deacetylase complex, conserved between human and yeast, represses transcription when targeted by promoter-specific transcription factors. SIN3 and RPD3 also affect transcriptional silencing at the HM mating loci and at telomeres in yeast. Interestingly, however, deletion of the SIN3 and RPD3 genes enhances silencing, implying that the Sin3-Rpd3 complex functions to counter...

متن کامل

A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing.

The histone chaperones CAF-1 and Rtt106p are required for heterochromatin silencing in the yeast Saccharomyces cerevisiae. Although it has been suggested that CAF-1 is involved in the maintenance of heterochromatin silencing, their exact functions during this process are not well understood. Here, we show that CAF-1 and Rtt106p are involved in the early stages of heterochromatin formation. The ...

متن کامل

SIRT6 is required for maintenance of telomere position effect in human cells

In Saccharomyces cerevisiae, the repressive chromatin environment at telomeres gives rise to telomere position effect (TPE), the epigenetic silencing of telomere-proximal genes. Chromatin-modifying factors that control TPE in yeast have been extensively studied, and, among these, the lifespan regulator and silencing protein Sir2 has a pivotal role. In contrast, the factors that generate and mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 1997